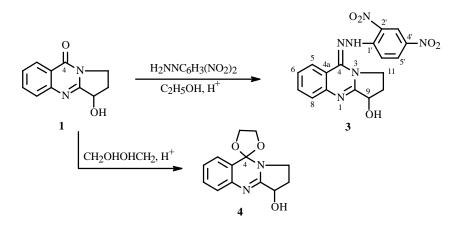
ISOLATION AND CHEMICAL TRANSFORMATIONS OF VASICINONE

M. T. Agedilova,¹ A. Zh. Turmukhambetov,¹ A. V. Kazantsev,¹ E. E. Shul'ts,² M. M. Shakirov,² and S. M. Adekenov¹

UDC 547.944/945+547.234

Vasicinone and peganine were isolated from Peganum harmala *L. Vasicinone 2,4-dinitrophenylhydrazone and vasicinone ketal were prepared.*

Key words: Peganum harmala, alkaloids, vasicinone, peganine, 2,4-dinitrophenylhydrazine, ketal.


Quinazoline alkaloids are the active principles of plants of the harmala family (Peganaceae Tiegh.), which are popular in alternative medicine [1-3]. We investigated alkaloids of common harmala (*Peganum harmala* L.) collected in Karaganda region (Kazakhstan) during flowering and fruiting.

Extraction with $CHCl_3$ of stems, flowers, and leaves produced extracts that were separated by column chromatography over Al_2O_3 . Elution of the column isolated compounds identical to the quinazoline alkaloids (-)-vasicinone (1) and peganine (2), which have been previously obtained from this plant [1, 2, 4, 5].

In order to prepare new derivatives potentially with biological activity, we studied the reaction of **1** with hydrazine hydrazine, hydrazinium sulfate, phenylhydrazine, 2,4-dinitrophenylhydrazine, and ethyleneglycol.

We found that hydrazine hydrate, hydrazinium sulfate, and phenylhydrazine do not react with 1 under normal conditions.

2,4-Dinitrophenylhydrazine reacts with 1 in aqueous-alcoholic H_2SO_4 at room temperature and gives the desired vasicinone 2,4-dinitrophenylhydrazone (3) in 80% yield.

Heating 1 with ethyleneglycol in the presence of H_3PO_4 forms vasicinone ketal 4 in 53% yield. The structures of these compounds were confirmed by PMR, ¹³C NMR, IR, and UV spectra.

¹⁾ Institute of Phytochemistry, Ministry of Education and Science, Republic of Kazakhstan, Karaganda, ul. Gazalieva, 4, Kazakhstan; 2) Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 230-231, May-June, 2004. Original article submitted April 19, 2004.

Atom	δ, ppm	
	3	4
2	160.5	160.3
4	160.2	46.8
4a	127.4	121.0
5	126.2*	126.6
6	127.4*	127.4
7	134.2	134.2
8a	148.6	148.6
8	126.5*	129.8
9	71.9	71.9
10	29.4	29.4
11	43.4	43.3
1'	129.8	77.5
2'	118.7	76.4
3'	126.8*	
4 ′	121.0	
5'	126.8*	
6'	126.5*	

TABLE 1. ¹³C NMR Spectra of Vasicinone 2,4-Dinitrophenylhydrazone (**3**) and Vasicinone Ketal (**4**)

Signals marked by asterisks may be interchanged within one column.

EXPERIMENTAL

Melting points were determined on a Boetius instrument. IR spectra were recorded on a Vector-22 Fourier-spectrophotometer in KBr disks. PMR and ¹³C NMR spectra were obtained on Bruker AC-200 [working frequencies 200.13 (PMR) and 50.32 MHz (¹³C)] and Bruker DRX-500 [working frequencies 500.13 (PMR) and 125.76 MHz (¹³C)] in CDCl₃ (5%) solutions.

Mass spectra were recorded on a Finnigan MAT-8200 high-resolution mass spectrometer (electron ionization potential 70 eV). Column chromatography used Al_2O_3 (activity standard II); TLC, Silufol UV-254 plates and silica gel on alumina (20X) with I_2 vapor developer. Table 1 lists the ¹³C NMR spectra.

Isolation of Native Alkaloids. Air dried raw material from the aerial part of common harmala was exhaustively extracted with $CHCl_3$ (40°C). The extracts were chromatographed over an Al_2O_3 column (activity standard II). The yield of 1 from the stem extract upon elution by benzene:ethylacetate (2:1) was 0.02%; flowers (ethylacetate), 0.05%; leaves (benzene), 0.06%. The leaf extract upon elution by benzene:ethylacetate (2:1) afforded **2** in 0.004% yield from the air-dried raw material.

Vasicinone 2,4-Dinitrophenylhydrazone (3). Vasicinone (1, 0.5 g) in ethanol (20 mL) was treated at 20°C with an aqueous alcohol solution of 2,4-dinitrophenylhydrazine, which was prepared from 2,4-dinitrophenylhydrazine (0.4 g), conc. H_2SO_4 (2 mL), H_2O (3.0 mL), and ethanol (10 mL). The reaction mixture was kept at room temperature until the hydrazone precipitation was complete. The precipitate was filtered off and recrystallized from alcohol to afford **3** (0.75 g, 80%), mp 159-162°C, $R_f 0.31$ (benzene:alcohol:NH₃ 1:4:0.1), $[\alpha]_{580}$ -62° (*c* 0.08, ethanol). UV spectrum (EtOH, λ_{max} , nm): 225, 205, 265, 351, 316, 303 (log ε 3.6055, 3.6073, 3.9626, 4, 4.2441, 4.3468).

IR spectrum (KBr, v, cm⁻¹): 3365 (OH); 3227, 1668 (NH); 1623 (C=N); 1519, 1343 (NO₂); 1594 (C₆H₅).

PMR spectrum (CD₃OD, δ, ppm, J/Hz): 2.30 (1H, m, H-10a), 2.78 (1H, m, H-10b), 4.10 (1H, m, $J_{gem} = 17.2$, H-11a), 4.40 (1H, m, $J_{gem} = 17.2$, H-11b), 5.48 (1H, t, J = 7.5, H-9), 7.69 (1H, dt, J = 7.8, 1.5, H-7), 7.72 (1H, dd, J = 7.5, 2.5, H-8), 7.82 (1H, dd, J = 7.5, 2.5, H-5'), 7.95 (1H, dt, J = 7.8, 2.0, H-6), 8.32 (1H, dd, J = 7.8, 1.8, H-5), 8.31 (1H, d, J = 7.5, H-1^{6'}), 9.05 (1H, d, J = 2.5, H-3').

Vasicinone Ketal (4). Vasicinone (1, 0.1 g, 0.001 mmol) was placed in a flask and treated with stirring with ethyleneglycol (6 mL, pH 8) and H_3PO_4 (1 drop, 87%). The reaction mixture was stirred at 61°C for 2 h with TLC monitoring, cooled, treated with saturated NaCl solution, and extracted with CHCl₃. The CHCl₃ was evaporated. The solid was distilled in vacuum to afford 4 (53% yield), $R_f 0.4$. The product solidified upon storage in a refrigerator. Recrystallization from alcohol gave crystals, mp 188-190°C, [α]₅₈₀ -110° (*c* 0.1, ethanol).

IR spectrum (KBr, v, cm⁻¹): 3300 (OH); 3136, 1684, 1668 (NH); 1633 (C=N); 1211, 1042 (-O-CH₂-CH₂-O-).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 2.30 (1H, m, H-10a), 2.62 (1H, m, H-10b), 3.73 (s, O–C<u>H</u>₂–C<u>H</u>₂–O), 3.98 (1H, m, H-11b), 4.33 (1H, m, H-11a), 5.23 (1H, t, J = 7, H-9, OH), 7.45 (1H, m, H-7), 7.71 d, 7.73 d (1H each, H-5,8), 8.26 (1H, m, H-6).

REFERENCES

- 1. S. Yu. Yunusov, *Alkaloids* [in Russian], Fan, Tashkent (1974).
- 2. M. V. Telezhenetskaya, *Progress in Research on Alkaloid-Bearing Plants* [in Russian], Kh. N. Aripov, ed., Fan, Tashkent (1993).
- 3. Atlas of Distribution and Reserves of Medicinal Plants of Kazakhstan [in Russian], Gylym, Almaty (1994), p. 18.
- 4. N. I. Koretskaya, Zh. Obshch. Khim., 27, 3361 (1957).
- 5. Kh. N. Khashimov, M. V. Telezhenetskaya, and S. Yu. Yunusov, Khim. Prir. Soedin., 456 (1969).